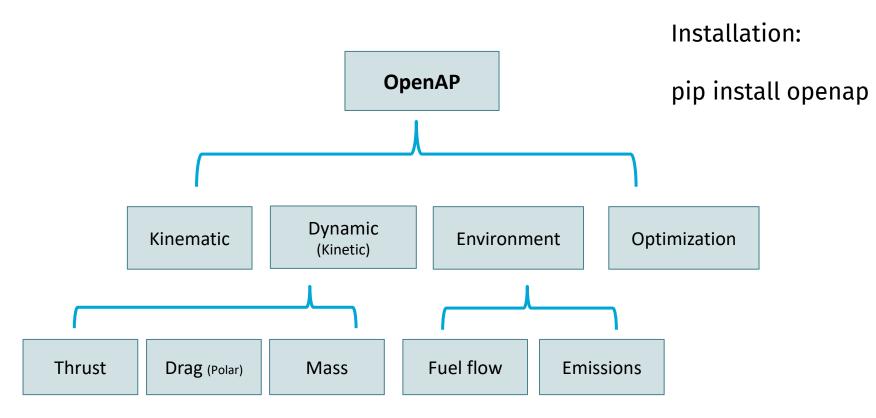
OpenAP: From Open Data to Sustainable Aviation

Source: https://github.com/TUDelft-CNS-ATM/openap Docs: https://openap.dev

Prof.dr.ir. Jacco M. Hoekstra on behalf of Dr. Junzi Sun

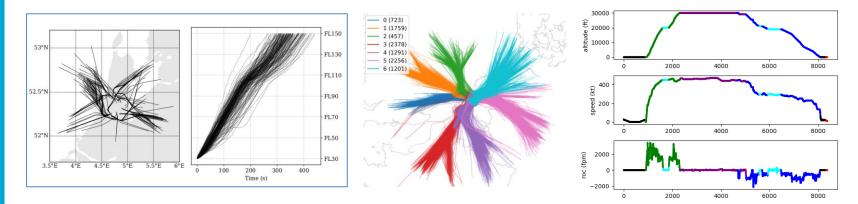
Faculty of Aerospace Engineering Department of Control & Operations Delft University of Technology



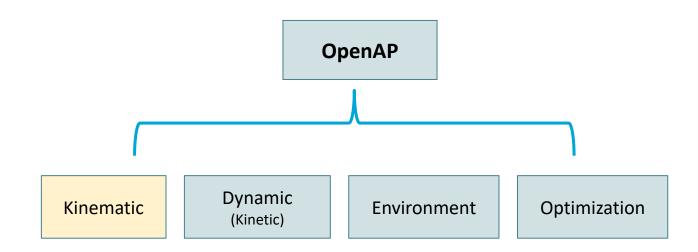
Origin story Open Aircraft Performance Models

- BlueSky Open ATM simulator started in 2013
- Also support for BADA implemented in BlueSky (2014), still compatible with BADA 3.12+
- Goal was to developing open aircraft performance models
- Started off as an MSc assignment in 2014 (Dr. Isabel Metz, now at DLR)
- In 2015 Dr. Junzi Sun started his PhD developing ADS-B based OpenAP
- Dr. Junzi Sun joined CNS-ATM in 2019 after his PhD defense, to continue on OpenAP and other open source initiatives
- OpenAP also split off as separate package
- Emission and fuel models added
- Trajectory optimizer added

Open Aircraft Performance Model (OpenAP)


OpenAP: Built with open data (ADS-B / Mode S)

TU Delft data

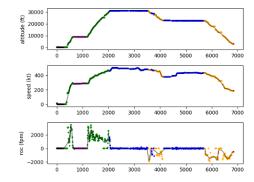


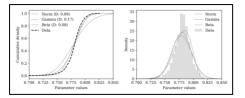
=> pymodes

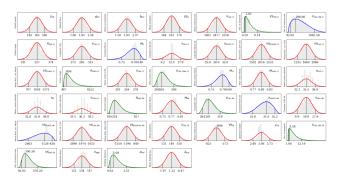
Constructing kinematics models

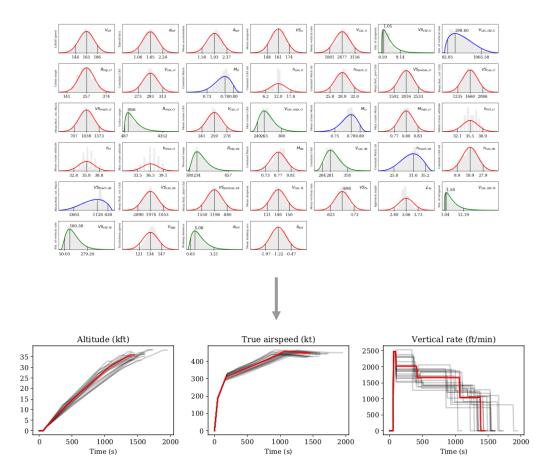
Local and global ADS-B Data

- Flight trajectory process,


- Flight phase identification
- Post-processing


Construct parametric model for key performance parameters (CAS, Mach, vertical rate, etc)





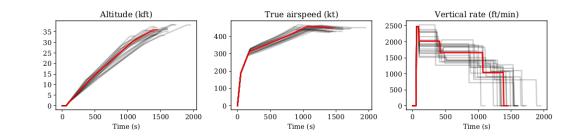
Trajectory generation

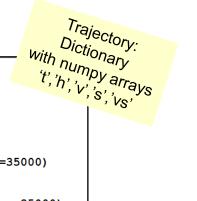
Trajectory: Dictionary with numpy arrays 't','h','v','s','vs'

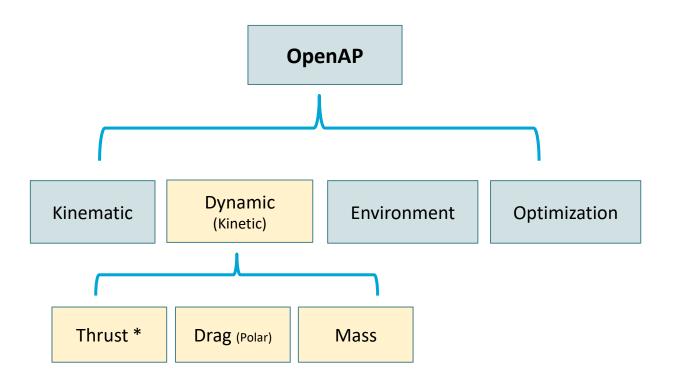
Trajectory generation

from openap.traj import Generator

```
trajgen = Generator(ac='a320')
```

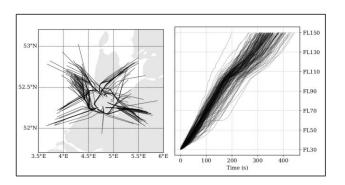

TUDelft

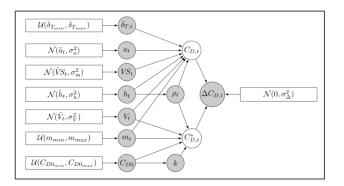

trajgen.enable noise() # enable Gaussian noise in trajectory data

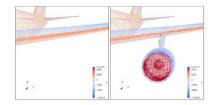

```
data_cl = trajgen.climb(dt=10, random=True) # using random paramerters
data cl = trajgen.climb(dt=10, cas const cl=280, mach const cl=0.78, alt cr=35000)
```

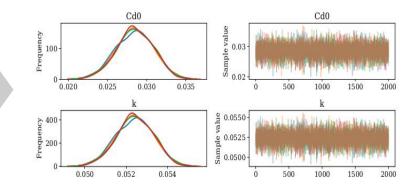
```
data_de = trajgen.descent(dt=10, random=True)
data_de = trajgen.descent(dt=10, cas_const_de=280, mach_const_de=0.78, alt_cr=35000)
```

```
data_cr = trajgen.cruise(dt=60, random=True)
data_cr = trajgen.cruise(dt=60, range_cr=2000, alt_cr=35000, m_cr=0.78)
```

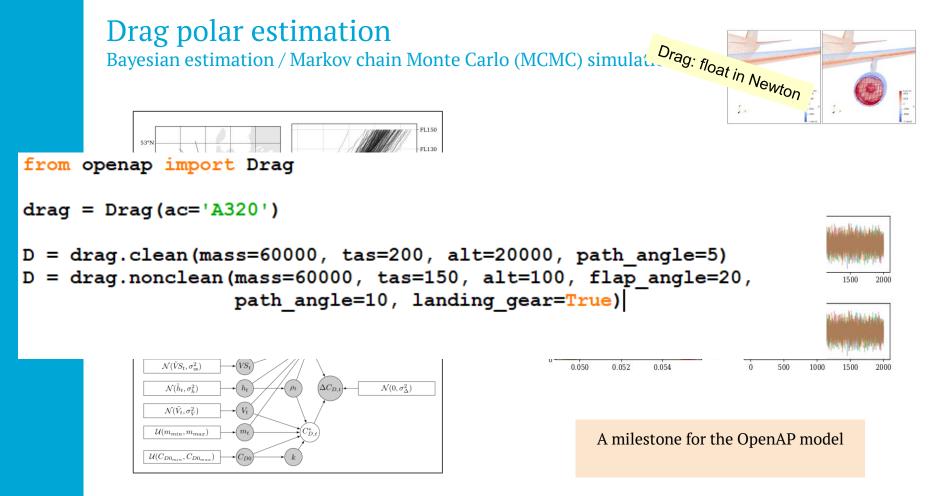



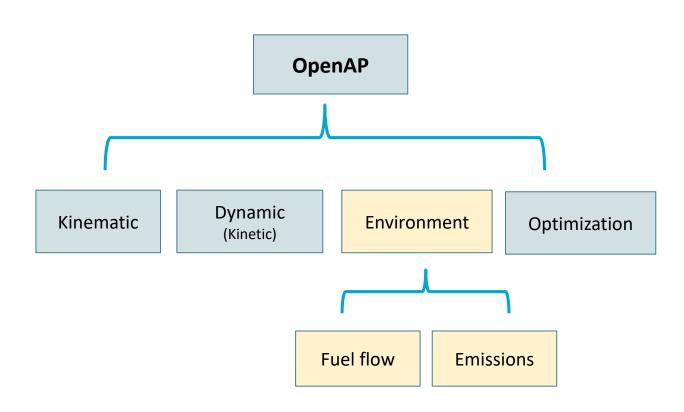


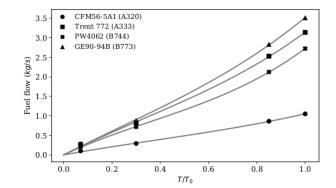

* Bartel, M., Young, T.M., 2008. Simplified thrust and fuel consumption models for modern two-shaft turbofan engines. Journal of Aircraft 45, 1450–1456.

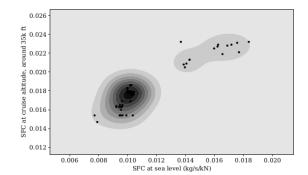

Drag polar estimation

Bayesian estimation / Markov chain Monte Carlo (MCMC) simulation

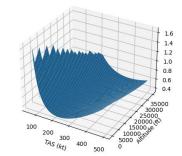


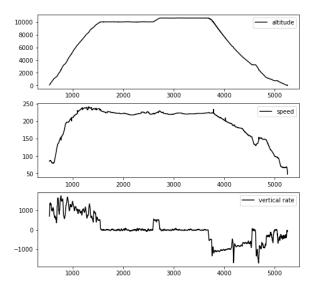


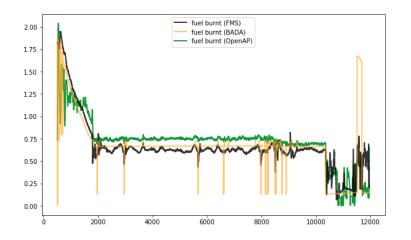

A milestone for the OpenAP model


OpenAP fuel module

ICAO ENGINE EXHAUST EMISSIONS DATA BANK											
SUBSONIC ENGINES											
ENGINE IDENTI UNIQUE ID NUM ENGINE TYPE: REGULATORY DA		CFM56-5B1 2CM012 TF		BYPASS RATIO: 5.7 PRESSURE RATIO $(\pi_{0:0})$: 30.2 RATED OUTFUT $(F_{0:0})$ (KN): 133.45							
CHARACTERISTI	C VALUE:			HC	со	NO×	SMOKE NUMBER				
AS % OF CAEP/ AS % OF CAEP/				7.1 36.1 %	49.7 42.1 %	67.7 67.4 % 84.3 % 100.4 % 114.0 % 134.0 %	13.5 61.7 %				
×	PRE-REGULATIO CERTIFICATION REVISED (SEE			TEST ENGINE STATUE X NEWLY MANUFACTURED ENGINES - DEDICATED ENGINES TO PRODUCTION STANDARD - OTHER (SEE REMARKS)							
EMISSIONS STA	ITUS DATA CORRECTE (ANNEX 16 V			CURRENT ENGINE STATUS (IN FRODUCTION, IN SERVICE UNLESS OTHERWISE NOTED) × OUT OF PRODUCTION (DATE: -) - OUT OF SERVICE							
MEASURED DATA	POWER	TIME	FUEL FLOW		SIONS INDICES	(()					
MODE	SETTING (%Foo)	minutes	kg/s	HC	C0	NOx	SMOKE NUMBER				
TAKE-OFF	100	0.7	1.359	0.1	0.5	35.1	8.6				
CLIMB OUT	85	2.2	1.113	0.1	0.5	27.2	10.5				
APPROACH	30	4.0	0.364	0.12	1.57	10.8	0				
IDLE	7	26.0	0.117	3.21	28.4	4.6	0				
	L (kg) or EMIS	SIONS (g)	474	617	5423	7783	-				
NUMBER OF ENG				1	1	1	1				
NUMBER OF TES				3	3	3	3				
	(g/kN) or AVE	RAGE SN (MAX)		4.6	40.5	58.4	10.5				
AVERAGE D_p/F_{oc}											
SIGMA (Dp/Foo	in g/kN, or SN in g/kN, or SN			0.29	0.34	0.7	1.4				

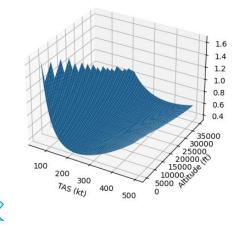


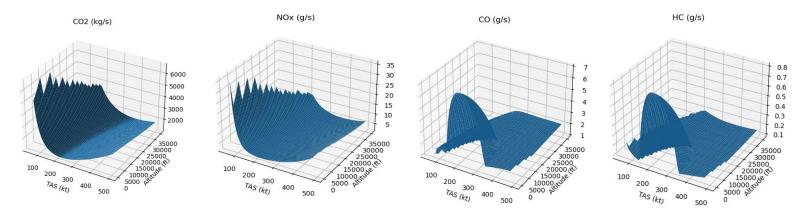




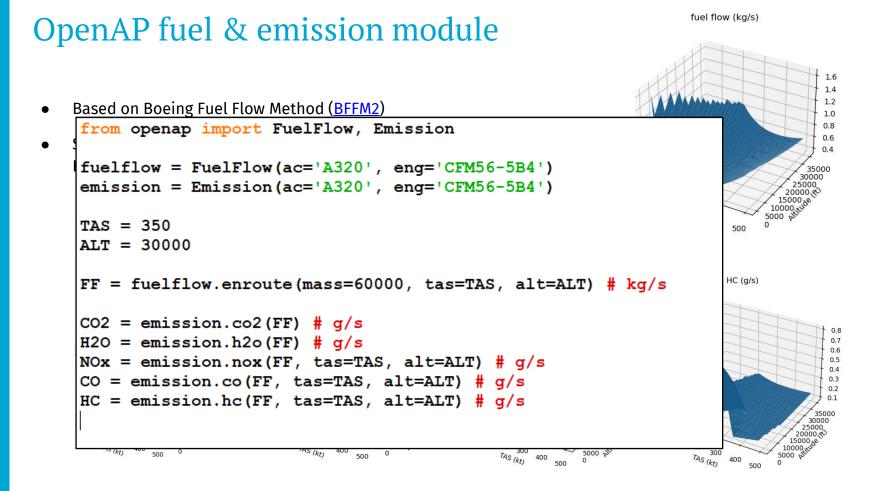
OpenAP fuel & emission module

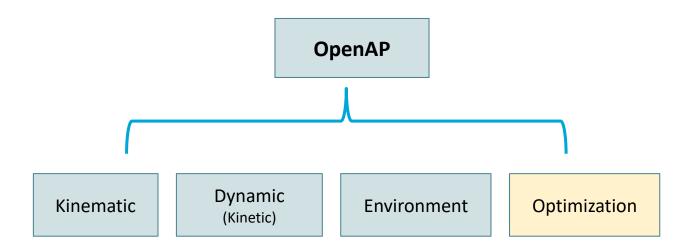
- Fuel flow model enables calculation of fuel consumption directly from trajectory data
- Simplified APIs for calculating fuel consumption





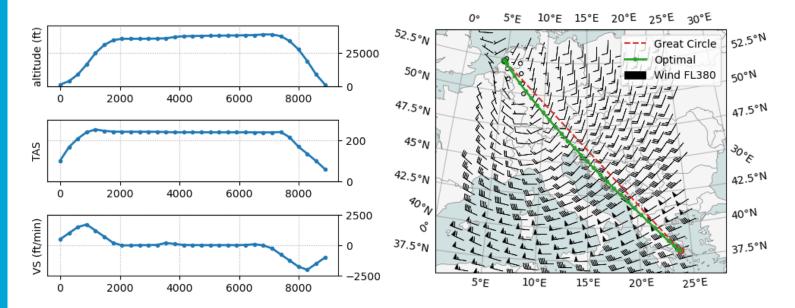
OpenAP fuel & emission module


- Based on Boeing Fuel Flow Method (<u>BFFM2</u>)
- Simplified APIs for calculating different pollutant emission (CO2, H2O, CO, NOx, HC) from trajectory data



ŤUDelft

DuBois, D. and Paynter*, G., ""Fuel Flow Method2" for Estimating Aircraft Emissions," SAE Technical Paper 2006-01-1987, 2006, <u>https://doi.org/10.4271/2006-01-1987</u>.


DuBois, D. and Paynter*, G., ""Fuel Flow Method2" for Estimating Aircraft Emissions," SAE Technical Paper 2006-01-1987, 2006, <u>https://doi.org/10.4271/2006-01-1987</u>.

Trajectory optimization

- Separate package: pip install openap-top
- Rapid generation of 4D optimal trajectories Different objective functions, focusing on minimizing environmental impacts

Trajectory optimization

- Separate package: pip install openap-top
- Rapid generation of 4D optimal trajectories Different objective functions, focusing on minimizing environmental impacts

	ts	хр	ур	h	lat	lon	alt	mach	tas	vs	heading	mass	fuel
0	0.0	-652999.321758	834923.636025	457.200000	52.316620	4.746300	1500.0	0.30	197.42	500.0	129.51	66300.0	242.307282
1	495.0	-614487.871534	803170.971554	1714.979740	52.072871	5.359326	5627.0	0.50	324.28	700.0	136.92	66047.0	271.304510
2	990.0	-558662.916386	743475.056260	3474.631769	51.591841	6.257091	11400.0	0.70	444.52	1200.0	136.92	65771.0	375.278102
З	1486.0	-482790.960282	662342.060174	6492.063560	50.927484	7.449811	21299.0	0.82	501.12	1000.0	136.92	65403.0	389.360710
4	1981.0	-397078.421340	570686.125050	9007.623018	50.162845	8.760018	29553.0	0.82	484.18	500.0	136.92	65025.0	333.832365
5	2476.0	-313590.147398	481408.687763	10265.402719	49.404290	9.999234	33679.0	0.82	475.48	-0.0	136.92	64695.0	291.345349
6	2971.0	-230856.502150	392938.205904	10265.402679	48.639828	11.192213	33679.0	0.82	475.48	-44.0	136.92	64404.0	287.655101
7	3466.0	-148055.606310	304395.810227	10154.524565	47.862635	12.352211	33315.0	0.82	476.26	12.0	136.92	64116.0	291.663965
8	3962.0	-65206.030982	215801.359576	10185.205885	47.073466	13.479867	33416.0	0.82	476.04	13.0	136.92	63825.0	291.052710
9	4457.0	17605.483824	127247.608603	10217.282758	46.273738	14.574960	33521.0	0.82	475.82	13.0	136.92	63534.0	290.397531
10	4952.0	100378.046963	38735.510244	10249.404142	45.464062	15.638483	33627.0	0.82	475.59	13.0	136.92	63244.0	289.742513
11	5447.0	183111.593551	-49734.866114	10281.557682	44.645030	16.671425	33732.0	0.82	475.37	13.0	136.92	62954.0	289.088061
12	5942.0	265806.066099	-138163.458997	10313.743398	43.817221	17.674762	33838.0	0.82	475.14	13.0	136.92	62666.0	288.434183
13	6437.0	348461.406891	-226550.206689	10345.961512	42.981207	18.649450	33943.0	0.82	474.92	13.0	136.92	62377.0	287.782114
14	6933.0	431077.530780	-314895.018137	10378.256766	42.137546	19.596423	34049.0	0.82	474.69	48.0	136.92	62090.0	289.590364
15	7428.0	513600.238559	-403139.935904	10499.431368	41.287346	20.516002	34447.0	0.82	473.85	127.0	136.92	61801.0	294.066220
16	7923.0	595853.980125	-491097.237062	10818.877960	40.432988	21.407251	35495.0	0.82	471.60	-373.0	136.92	61508.0	257.387872
17	8418.0	678482.040998	-579454.813215	9880.544826	39.568291	22.277925	32416.0	0.70	408.19	-873.0	136.92	61248.0	198.841922
18	8913.0	750610.723598	-656584.973336	7684.431935	38.808582	23.018417	25211.0	0.50	300.71	-1373.0	136.92	61045.0	121.268546
19	9409.0	804096.501379	-713779.510284	4230.539286	38.242498	23.556079	13880.0	0.30	188.74	-1500.0	129.51	60921.0	74.760340
20	9904.0	841941.757884	-744982.898488	457.200000	37.923510	23.943260	1500.0	0.10	65.81	-1627.0	122.09	60849.0	142.261908

Thank you and for questions:

From right to left: Dr. Joost Ellerbroek j.ellerbroek@tudelft.nl

Prof.dr.ir. Jacco M. Hoekstra j.m.hoekstra@tudelft.nl

Dr. Junzi Sun j.sun-1@tudelft.nl

Joost Jacco KLMS71 Junzi 🔺 KLM440 KEN200 TRA191 EDDV FDDL EDDK A KLM568 KLM93 ATART -EDDF

Section Operations & Environment Department Control & Operations Faculty of Aerospace Engineering Delft University of Technology **ŤU**Delft

Keep an eye on: <u>https://github.com/TUDelft-CNS-ATM</u>

j.m.hoekstra@tudelft.nl

Openap PoC: j.sun-1@tudelft.nl

Keep an eye on: <u>https://github.com/TUDelft-CNS-ATM</u>

