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Abstract: 

Chronic lymphocytic leukaemia (CLL) is the most prevalent adult leukaemia in western 

countries, with its occurrence increasing with age. B-CLL mainly affects elderly population 

with median age of 65 at diagnosis. This leukaemia is characterised by the clonal expansion 

accumulation of malignant CD5+ B cells in blood, peripheral lymphoid organs and bone 

marrow. It is proposed that onset and progression of CLL is driven by unknown (auto) 

antigens via Toll-like receptors (TLRs) and/or environmental signals through B Cell Receptors 

(BCRs). CD180, which is a member of the TLR family is expressed by about 60% of CLL 

samples. Once ligated with monoclonal antibodies against CD180, half of these CD180+ CLL 

cells responded by enhancing the activation (phosphorylation) of protein kinases that are 

involved in BCR signalling leading to activation of pro-survival BTK/PI3/AKT pathway.  

Studies have also demonstrated that pre-ligation of CD180 can rewire the BCR(IgM)-

mediated signalling from the pro-survival BTK-PI3K/AKT pathway towards the pro-apoptotic 

p38MAPK pathway. This may indicate that patients who co-express both IgM and CD180 

have a better prognosis. 

Certain chromosomal aberrations have shown to be strong prognostic markers for CLL, 

particularly regarding response to treatment and survival. TP53 deletion is associated with 

the worst prognosis of the five most common chromosomal aberrations. Here we 

investigated the association between CD180+ and TP53 deletion, in order to train a 

computer algorithm based on experimental data collected to create a model which predicts 

the outcome of TP53 deletion of patients with CLL. Thus, creating a new and rapid method 

for therapeutic profiling aiding strategies for prognostic measures in patients with CLL. 

 

 

 

Introduction:  

B Chronic lymphocytic leukaemia is the most prevalent adult leukaemia in western nations, 
and its occurrence increases with age. B-CLL mainly affects elderly population with median 
age of 65 at diagnosis (Sun, Wang and Sun, 2017). This leukaemia is characterised by the 
clonal expansion of build-up of malignant CD5+ B cells in blood, peripheral lymphoid organs 
and bone marrow (Durrieu et al., 2011). It is proposed that onset and progression of CLL is 
driven by unknown (auto) antigens via Toll-like receptors (TLRs) and/or environmental 
signals through B Cell Receptors (BCRs) (Porakishvili et al., 2011). TLRs are a class of proteins 
present on antigen-presenting cells which recognise structural conserved molecules derived 
from pathogens (Van Lent et al., 2010). Previously it was shown that the orphan receptor, 
CD180, which is a member of the TLR family is expressed by about 60% of CLL samples. 
Once ligated with monoclonal antibodies against CD180, half of these CD180+ CLL cells 
responded by enhancing the activation (phosphorylation) of protein kinases that are 
involved in BCR signalling leading to activation of pro-survival BTK/PI3/AKT pathway. The 



same study demonstrated that pre-ligation of CD180 can rewire the BCR(IgM)-mediated 
signalling from the pro-survival BTK-PI3K/AKT pathway towards the pro-apoptotic p38MAPK 
pathway. This may indicate that patients who co-express both IgM and CD180 have a better 
prognosis (Porakishvili et al., 2011).  

Certain chromosomal aberrations have shown to be strong prognostic markers for CLL, 
particularly regarding response to treatment and survival. There are five principal prognostic 
genetic aberrations in CLL which are deletions 17p, 11q, 13q, trisomy 12 and normal 
karyotype (summarised in table 1) (Hallek, 2017). p17 deletion and TP53 mutations remain 
the most significant adverse prognostic features (Canta et al., 2016). In this project the first 
aim was to investigate the association between P53 deletion and expression of CD180 (and 
other receptors of established prognostic significance). The second aim was to use the 
above information to train an algorithm using computer science to help improve the 
prediction of TP53 deletion thus contributing to the prediction of disease outcome for a 
patient with CLL. 

 
 
Table 1: Established genetic prognostic markers   

 

 

 



Research plan and experimental approach:  

As stated in figure 1, all blood samples were collected from the University College London 

Hospital under a material transfer agreement (NREC: 08/H0714/6) with University of 

Westminster. The samples were cultured for FISH, and the Peripheral Blood Mononuclear 

Cells (PBMCs) were isolated for phenotyping experiment. The purpose of FISH technique is 

to identify the p53 deletion in CLL patients. Using immunophenotyping technique, the 

expression of receptors with prognostic significance were measured. Figure 2 shows a 

GANTT chart, demonstrating how the project was scheduled.  

 

 

 

Figure 1: Flowchart demonstrating the sequence of steps of data collection and analysis. 

Once the sample is collected from UCLH, an aliquot of it is cultured and fixed for FISH 

analysis. The rest of the sample is processed (their PBMCs are isolated by Histopaque-1077 

(Sigma-Aldrich, Dorset, UK)) and prepared for the process of flow cytometric (FC) 

immunophenotyping. The data produced by FISH and FC were combined into one csv file for 

statistical analysis in Python. Different train/test splits of the csv data were produced by 

Leave-One-Out cross validation. The splits were used to train and test the model, and for 

each one, the feature selection took place. After choosing the best model from CV scores, it 

was deployed with a graphical user interface.  



 

Figure 2: GANTT chart demonstrating the activities for the two-week period. Every Tuesday 

evening, the samples are collected from the hospital. The blood cultures are prepared on 

the same day. The cultures are incubated for 72 hours. PBMC takes place on the day after 

(Wednesdays). PBMCS are then stored in a freezer until the next day for phenotyping. On 

Friday fixation (chromosome preparation) can take place. The fixed cells can be analysed 

straight away, or they could be kept at -20 °C for later analysis.  

 

 

Methods and results:  

Patients:  

Blood samples were obtained from CLL patients with informed consent following ethical 

approval from University College London Hospital (UCLH) (08/H0714/6). Once collected 

from the hospital, for blood culturing purposes an aliquot of each sample was cultured in 

karyotyping medium (thermo-Fisher) (at 37 °C, in 5% CO2) for Fixation to be done 72 hours 

later.  

 

Fixation:  

First, Hypotonic solution-0.75: KaryoMAX Potassium Chloride (Thermo-Fisher) was added to 

the blood cultures and cells were fixed with methanol acetic acid (both Sigma-Aldrich). Next, 

a drop of the suspension prepared was placed on a microscope slide. Chromosomes were 

then denatured in 70% Fomamide-9037/2xSS at 72°C. Simultaneously, the probes were 

denatured at high temperature. Chromosomes are then treated with ice cold ethanol in 

series (70%, 90% and 100%) followed by air drying. 10 µl of probes are applied to the slides 

(chromosomes) and incubated at 37 °C for 24 hours. The slides were washed in 2XSSC + 

Tween20 (at RT), then 0.4SSC+ Tween20 (at 72 °C) and finally followed by 2xSSC + Tween (at 

RT) (Sigma-Aldrich).  

 

 



PBMC isolation:  

The blood samples were first homogenised using PBS, then the PBMCs were isolated using 

Histopaque-1077 (all Sigma-Aldrich, UK). These cells were then washed twice with PBS, 

counted and stored in freezing medium at -80 °C.  

 

Phenotyping:  

The previously isolated PBMCs were thawed, counted and distributed in micro-well plates. 

The antibodies used were anti-IgG1 (used as the negative isotype control), anti-CD180, anti-

IgM (BD Bioscience Oxford, UK), anti-CD38, anti-CD79b, andtiCD86, anti-CD40 (Fitzgerald, 

North Acton, MA) and anti-IgD (Sigma-Aldrich). These antibodies were added to their 

corresponding previously labelled well. In the next step the cells were incubated with 

Fluorescein isothiocyanate (FITC) to label the antibodies with fluorescein so they could be 

viewed by the Flow cytometry (FC). Then mouse serum was added to eliminate the 

unwanted background produced by extra FITC. Finally, the cells were incubated with 

conjugated CD19 to solely label the B cells.  

 

Statistical tests:  

To analyse significance in association between CD180 expression and p53 deletion, T test 

should be used. And in future in order to check whether the correlation between the CD180 

expression and p53 deletion is independent of other confounding factors such as age, sex 

and mutational status of CLL, multivariate analysis can be done.  

 

The results obtained demonstrated a positive correlation between the expression of CD180 
and P53 deletion. The blood smears of patients who had the deletion also showed presence 
of micronuclei. The micronuclei are usually a sign of genotoxic events and chromosomal 
instability. They are commonly observed in cancerous cells and could indicate DNA damage 
events that increase the chance of degenerative diseases (Geyer and Subramaniyam, 2014). 
Figure 3 shows the FISH image of one patient who expressed the deletion. Figure 4 
illustrates a microscopic image of the peripheral blood smear of the same patient showing 
the presence of micronuclei.  



  

  

 

 

Tools for developing the model: 

The computational model was developed in Python, which was ideal for this project because 

it provided the necessary tools to build the prediction model.  The scikit-learn library was 

used for model selection, feature selection and displaying the test accuracy scores. Numpy 

and Pandas were used to store the csv data locally and visualise it. Additionally, Tkinter (a 

Python GUI) was used to create the user interface. 

 

Visualising the patient dataset: 

The dataset contained 8 patients with the label column P53 deletion “POSITIVE/NEGATIVE” 

and four genetic markers: “IgM%, IgD%, CD180% and CD38%” expressed as percentages. In 

P53 deletion  

Figure 3: Fluorescence in situ hybridisation 

images for patient 1.  

The first probe that emits green colour under the 

microscope serves as a control and hybridises with 

each of the chromosomes inside the nuclei of the 

cells. Each cell has two chromosomes and therefore 

presence of two green dots indicates that the 

hybridisation has worked. The second probe binds 

to the target sequence which in this case is P53 

locus on the chromosomes. When the target 

location is present on chromosomes, the probe will 

hybridise and fluoresce with a red colour. This 

means that absence of red dots in the nuclei 

indicate p53 deletion. The cells that have the 

deletion are indicated by arrows.  

 

Figure 4: blood smear for the same patient 

demonstrating micronuclei. 

The presence of micronuclei confirms the 

genetic instability in the patient. 

Micronuclei are made when a chromosome 

or a fragment of it is not properly 

incorporated into one of the daughter 

nuclei during mitosis (Geyer and 

Subramaniyam, 2014).  

 

Micronuclei  



theory, if any of these genetic markers highly correlate with the outcome (P53 deletion), 

they could be good predictors for the model. 

 

Figure 5. CD180 vs P53 Deletion. The Pearson Correlation is 0.491390 



 

Figure 6. CD38 vs P53 Deletion. The Pearson Correlation is 0.070159 

 

Figure 7. IgD vs P53 Deletion. The Pearson Correlation is 0.710682 



 

Figure 8. IgM vs P53 Deletion. The Pearson Correlation is 0.719465 

 

Model selection: 

Model selection is based upon choosing the best model for prediction. The model was 

grounded on K Nearest Neighbours classifier (KNN) because the algorithm tends to work 

well with a small dataset with fewer predictors (Introduction to k-Nearest-Neighbors - 

Towards Data Science, no date). The algorithm must be trained using a dataset with known 

outputs to build a model. When the trained model accepts new input, it calculates the 

distance between the input and the training observations, finds the nearest N neighbours, 

and then votes for a class. The class with the most training observations within the input 

space will be the predicted outcome. 

In order to obtain reliable results, feature selection and cross-validation had to be applied. 

Feature selection determines the best predictors (in this case, the genetic markers) for 

prediction. Cross-Validation (CV) is a method used to calculate a reliable testing accuracy 

from different sets of training and testing observations. Since there was a lack of training 

samples, Leave-One-Out CV (LOOCV) was used for training and testing the KNN model. In 

LOOCV, the testing set only contains one testing sample (without the P53 outcome) and the 

training set is the union of the other folds. It repeats this process until each observation has 

been included in the testing and training set. After using LOOCV for the KNN model at N 

neighbours, it would return a mean testing score before incrementing N neighbours. 



Feature selection was combined with CV to get the best predictors, but instead of the 

testing scores, only the columns were returned during the iterations. For each split, the 

training set was processed by the Recursive Feature Elimination (RFE) algorithm, which 

ranks the genetic markers according to their importance. The “IgD%” and “IgM%” attributes 

were the most nominated predictors produced by RFE. However, according to expert 

opinions, all genetic markers are required for the prediction. 

 

Figure 9. A graph that visualizes the accuracy score changing as the number of neighbors 

increase. K=1, mean score=1.0. K=2, mean score= 0.625.  K=3, mean score=0.75. K=4, mean 

score=0.5. K=5, mean score=0.625.  K=6, mean score=0.375.  K=7, mean score=0.0. 

KNN at N=1 was the best model because it scored the highest mean accuracy score of 1.0. 

This means that 8 out of 8 testing observations produced by the CV train test splits were 

predicted correctly when N was equal to 1. Although the scores are perfect, the model could 

be high in variance because K is very small. If we had more samples, experimentation with 

more neighbours for the classifier and possibly acquiring better mean scores with lower 

variance after 7 neighbours could have been possible. 

  



The graphical user interface: 

 

Figure 10. Adding new patients for the prediction. 

 

 

Figure 11. The outcomes for each patient after prediction (P53 Deletion). 



Discussion 

Both aims were successfully achieved; finding the association between CD180+ and TP53. 

Additionally, training the algorithm on the above experimental data collected was successful 

too. The algorithm was successful in predicting the outcome of TP53 deletion when CD180 

and other receptors showed a significant percentage of expression. However, one of the 

limitations of this project was the sample size (n=8). Although, the model used KNN due to 

the algorithm working well with a small dataset with fewer predictors, scientific literature 

for CLL often shows that when a small cohort of patients is used for the sample size results 

often seem promising/successful. However, when a large cohort is used, these results are 

negligible due to the nature of CLL; it is very heterogenous for each individual thus difficult 

to treat. Therefore, to know if this model accurately predicts TP53 deletion and help 

clinicians in better prognostic measures we need to collect more experimental data based 

on a large group of patients (n=1000). This would also mean using another model prediction 

other than KNN, which is better equipped to handle large numbers of data for predictions. 

This would also mean validation of results using a large cohort of patients and accounting 

for the differences seen genetically by each patient with CLL. 

Experimentally, another limitation is expenses. Each genetic probe is very expensive (~£350) 

and limits the data collected. If more funding was allowed, other genetics probes could be 

used with the same computer model. This would generate more predictions for CLL for 

different genetic aberrations to aid prognostic measures.  

The chosen methods in this project was ideal because in order to determine if a sample has 

TP53 deletion well defined protocols must be followed; blood separation, phenotyping and 

FISH. This allowed generation of results to then train the algorithm created and assist in 

checking accurately if the algorithm made “sense/working” if any ambiguous predictions 

were resulting from the computer model alone. The computer model was effective in 

predicting the TP53 deletion and was rapid in acquiring results. The speed at which results 

are given is beneficial to a clinical setting due to large numbers of patients that need 

information, thus using machine learning is a great method. Conclusively, both methods 

helped to achieve the results and aims. 

 

Conclusions and Future Work 

This project used various scientific methods and machine learning in order to predict the 

association between CD180+ and TP53 deletions. An algorithm was then trained based on 

experimental data collected to predict if a patient would have TP53 deletion based on 

expression of CD180+ and other receptors associated with prognostic significance. Both 

aims were achieved though the sample size was small. In order to check if this model was 

accurately working due to the heterogenous nature of CLL, a large cohort of patients must 

be used whilst consideration of other confounding variables.  

Since this project only used TP53 probe due to limited expenses, in future other genetic 
chromosomal aberrations associated with CLL could be used as probes such as 11q/13q. 



This could further help in finding better prognostic outcomes for each patient using this 
model algorithm. We hope that our algorithm can be used in a clinical setting so that 
diagnosis/treatment of the disease is made much easier and accessible to all, whilst 
providing accurate information for those with CLL. Furthermore, perhaps this project can 
serve as a platform for the prognosis of other diseases and enhance personalised medicine.  

 

Lessons Learned 

When working within a multidisciplinary group we found that a new area of research can be 
formulated due to the expertise and guidance given by academics, and the creativity 
provided by students. This project was created to provide clinicians and patients better 
prognostic outcomes when diagnosing/treating CLL, with the use of an algorithm based on 
experimental data collected. Thus, revolutionising personalised medicine.  

Working alongside academics provided an insight into the daily workload and research 
projects that they are passionate about. It showed us the “world of science” and hard work 
needed by each project as well as teaching simultaneously. We were able to have an 
opportunity to understand problems encountered during research such as expenses, time 
management between students and academics, experimental failure and time required to 
train the algorithm model numerous times before it worked. Much of the research is trial by 
error.  This requires patience, diligence and communication with those that are well versed 
in the subject matter.  

We learnt new skills mostly in the area of computer science and how the algorithm is 
created/trained. We all agreed that this was interesting and showed the complexity when 
designing this project. An opportunity to meet new individuals as well as working with them 
from various departments within the university was particularly fun. It taught us that 
creating a project does require numerous people who will give much needed 
advice/expertise for the success of a project overall. Collaboration is key!  

 

To get this research across to stakeholders, we feel that it is very important to provide the 
cost expenditure needed for collection of experimental data. The genetic probes are 
expensive and using other probes to collect more information to gather results, should be 
accounted for. A GANTT chart is a good idea for providing stakeholders information and a 
schedule for the timeline of this project. This would also aid in setting a budget for each 
aspect of the project and prevent over-spending. 

To persuade stakeholders that this project is revolutionary and a necessity in healthcare, 
this model project can be used for a preliminary time period in a hospital clinic. Feedback 
via clinicians and patients would be collected to understand how effective this model is 
within a clinical setting. Hopefully, providing the stakeholders a security in knowing that this 
model is not only working successfully but is effective too. Ultimately providing patients 
with better care/treatment and faster results. Help would be required by computer experts 
who train the algorithm, clinicians, patients consent and scientists in the field of CLL to allow 
for success of this computer model and overall this project. Fundamentally, it is important 
to acknowledge that health and safety, ethical policies are accounted for and reinforced for 
everyone involved in this project. 



Group Reflection 

We jointly agree that the selection process for the team put together was extremely good. 

All members were repeatedly present and active towards the project. This was most 

effective during meetings where all members collaborated to resolve a problem via 

extensive group brain storming, in order to find a solution for the desired outcome of this 

project.  

There were minor barriers to overcome; due to the nature of working within a 

multidisciplinary group many restraints of the project lied in scheduling meetings. To 

overcome this, a group chat was created to allow effective communication between all 

members of the group. This was very successful for those that could not attend meetings at 

a certain day/time. Therefore, an individual could still receive all the information and give 

productive input. Due to the essence of this project, a lot of time is necessary to carry out 

the wide array of experimental protocols for each patient sample for the collection of 

results. To analyse each sample for end conclusions, adequate time is needed to ensure 

accuracy and precision of data collected, therefore accumulating valid results. At times, 

some patients had not produced enough results therefore a repeated analysis of this sample 

was necessary as well as in the case of complete failed experiments. Therefore, a meticulous 

amount of time, care and precision was taken when following experimental protocols to 

ensure no setbacks would occur. Within this project time was a constraint and so in future 

an accurate GANTT chart should have accounted for the above. Additionally, perhaps more 

effective communication between members of the group to set a specific day/time each 

week solely for this project that is scheduled in our official academic calendar.  

The biggest enabler for our success was the support of higher education officials involved 

with this project due to their extensive expertise in both the field of research and producing 

scientific reports/presentations. Not to mention their guidance when encountering 

difficulties in the laboratory or with the computer model due to their expertise and 

extensive experience. 
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